
LLNL-POST-804617
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52 07NA27344.

Communication performance has not improved at
the same rate as computational performance on
GPU based machines.
The production LLNL rad-hydro code Ares was
ported to GPUs but has lower communication
performance than expected.
Relevant characteristics:
• 2/3D semi-structured meshes
• parallelized by mesh splitting
• halo exchange communication

Physics Application

Communication Options

MPI Datatype Packing is Slow Problem Details

Code:
• Comb 0.2.0
• https://github.com/LLNL/Comb
Problem:
• 3 variables
• 50^3, 100^3, 200^3 zones per process
• 1-zone halo
• 26 neighbors per process
• 16 nodes, 64 processes, 64 GPUs
Machine:
• rzansel.llnl.gov
• 2 x IBM Power9 + 4 x Nvidia V100
Compilers:
• xl-2019.12.23 (16.1.1.6)
• cuda-10.1.243
MPI:
• spectrum-mpi-2019.06.24

Future Work

More fully examine:
• performance of MPI with one rank per core.

CPU results here use OpenMP to utilize all
CPU cores.

• parallelizing groups of messages using Cuda
streams to parallelize packing and potentially
increase packing and communication overlap.

• automatic Cuda kernel fusion to reduce
amount of communication code rewrite while
gaining the benefits of kernel fusion.

• stream triggered communication (GPU direct
async) to eliminate device synchronization
overhead, and potentially increase packing
and communication overlap

• Cuda graphs as a means of combining
automatic Cuda kernel fusion and stream
triggered communication.

Acknowledgements

LLNL
• Lee Ellison
• Arjun Gambhir
• Olga Pearce
• Brian Pudliner
• Brian Ryujin

Look at communication performance on Sierra by
combining various resources and techniques.
Memory spaces:
• Host based memory

• host memory (malloc)
• host pinned memory

• Device based memory
• CUDA device memory

• CUDA managed memory
Execution methods :
• Serial
• OpenMP host threading
• CUDA kernels
• CUDA graphs
• Manual CUDA kernel fusion
• Automatic CUDA kernel fusion
• CUDA Aware MPI datatypes
Communication staging methods:
• pack and send one message at a time
• pack messages and send messages in groups
• Pack all and send all messages
Communication libraries and methods:
• MPI
• CUDA Aware MPI (GPU direct)
• Libgpump (GPU direct async)

LLNL

Jason Burmark

Halo Exchange Performance on the Sierra Supercomputer

Large Fraction of GPU Time in Communication

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50^3 Cuda 100^3
Cuda

200^3
Cuda

Pe
rc

en
t o

f T
ot

al
 T

im
e

GPU Cuda

compute Irecv
pack Isend wait recv unpack
wait send compute

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50^3
OpenMP

100^3
OpenMP

200^3
OpenMP

Pe
rc

en
t o

f T
ot

al
 T

im
e

CPU OpenMP

compute Irecv
pack Isend wait recv unpack
wait send compute

Kernel Launch Overhead Dominates Packing

Cuda Aware MPI with GPU Direct Performance is Mixed Stage Communication to Avoid Kernel Launch and Synchronization Overheads

GPU tests spend a higher proportion of time in communication relative to
the OpenMP CPU tests for large problem sizes even with the fastest known
communication options due to higher on-node performance.

Kernel launch overhead dominates packing and unpacking performance.
Manually fuse Cuda kernels to reduce the number of kernel launches and
reduce the total overhead.

Spectrum MPI datatype packing and
unpacking is not yet performant when used
with device memory.

Cuda Aware MPI with gpu direct sends data directly
from device memory to the network, but the
performance is mixed.

• Performance of packing to device memory is
higher than to host pinned memory

• Device Bandwidth to network is lower (hardware
issues)

Stage messages in groups to fuse packing kernels
and device synchronization for multiple messages.
Balance reduced overhead with reduced overlap
between packing and communication.

• One-by-One: Pack message, send message (x26)
• Two-Groups: Pack some messages, send some

messages (x2)
• One-Group: Pack messages, send messages (x1)

The Comb halo exchange communication
performance benchmarking tool was written to find
ways to improve communication performance.
• Explore memory spaces, execution methods, and

communication methods
• Comb steps

1. Placeholder computation
2. Halo-exchange communication

1. Irecv
2. Pack and Isend
3. Wait Recv and Unpack
4. Wait Send

3. Placeholder computation

Communication Benchmark

0

100

200

300

400

500

600

50^3 100^3 200^3

Ti
m

e
(u

s)

Cuda Kernel
Packing

pack Isend

0

100

200

300

400

500

600

50^3 100^3 200^3

Ti
m

e
(u

s)

Fused Cuda Kernel
Packing

pack Isend

0

500

1000

1500

2000

2500

50^3 Pack
HostPinned MPI

Host

50^3 Pack Device
MPI GPUDirect

100^3 Pack
HostPinned MPI

Host

100^3 Pack
Device MPI
GPUDirect

200^3 Pack
HostPinned MPI

Host

200^3 Pack
Device MPI
GPUDirect

Ti
m

e
(u

s)

Pack into Host Pinned Buffer + MPI vs
Pack into Device Buffer + Cuda Aware GPU Direct MPI

compute Irecv pack Isend wait recv unpack wait send compute

50^3 Pack
Cuda Kernel

50^3 Pack
Cuda Aware

MPI
Datatype

pack Isend 446 414955

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Ti
m

e
(u

s)

Cuda Kernel Packing vs Cuda
Aware MPI Datatype Packing

pack Isend

0

500

1000

1500

2000

2500

3000

50^3 One-
by-One

50^3 Two-
Groups

50^3 One-
Group

100^3 One-
by-One

100^3 Two-
Groups

100^3 One-
Group

200^3 One-
by-One

200^3 Two-
Groups

200^3 One-
Group

Ti
m

e
(u

s)

Stage MPI Communication by Handling Messages
One-by-One vs in Two Groups vs in One Group

compute Irecv pack Isend wait recv unpack wait send compute

https:///

	Slide Number 1

